Overcoming Transmission Constraints: Energy Storage and Wyoming Wind Power

DOE Energy Storage Systems Research Program
Annual Peer Review

Washington, DC November 3, 2006

SAIC, VRB Power Systems, and PacifiCorp

Presented by Tim Hennessy

Examining the Need for Energy Storage

- Wyoming is a significant electricity exporter to western States
- Constraints along PacifiCorp transmission corridors have resulted in wind energy curtailments
- Additional wind projects were under construction
- Tariffs in Wyoming do not encourage wind generation (no capacity charge or time-of-day energy charge)
- Renewable Portfolio Standards in other states encourage Wyoming wind energy exports
- Could energy storage help eliminate wind energy curtailments and reduce transmission congestion?

A Unique Investigation

- Examined operating data from functioning facilities:
 - Foote Creek Rim I windfarm substation owned and operated by PacifiCorp
 - 69 wind turbines and six meteorological stations owned by PacifiCorp and Eugene Water and Electric Board, and operated by SeaWest
 - VRB vanadium redox flow battery installed at PacifiCorp's Castle Valley substation near Moab, Utah
 - Hourly transmission flow data from PacifiCorp for the TOT 4A and 4B paths
 - A negotiated tariff for a windfarm developer
 - PacifiCorp's firm transmission service tariffs

Project Schedule

- \$70,000 Special Energy Project grant
- 20% cost share
- Contract signed October 5, 2004
- Staff changes and state procedures delayed progress

Milestone	Due Date
Task 1. Kick-Off Meeting	October 2004
Task 2. Mid-Project Status Report	January 2005
Task 3. Analysis Graphs and Tables	October 2005
Task 4. Final Report/Technical Paper	December 2006

Project Tasks

Task 1. Kick-Off Meeting

Web-conference to familiarize Team with the first-of-its-kind VRB battery demonstration and wind farm

Task 2. Wind/Battery Data Collection

Gather data on wind power, wind speed, temperature, transmission line availability, and battery operations for a calendar year

Task 3. Analysis and Team Review

Clean and combine data files gathered in a single database to permit creation of a hybrid wind-battery system for analysis

Task 4. Final Report/Technical Paper

Prepare final report that describes wind farm, battery demonstration, analysis performed, and impact of Renewable Portfolio Standards

Profile of Foote Creek Rim I Wind Farm

- Remote, treeless plateau between Laramie and Rawlins in southeastern Wyoming
- One of windiest places in the U.S., with average wind speeds of 25 mph
- Some of most extreme temperatures, as low as -30 F
- 69 600-kW Mitsubishi wind turbines started April 1999
- 41.4 MW co-owned by PacifiCorp and Eugene Water & Electric Board
- Built, operated, and maintained by SeaWest
- Turbines can generate power at 8-65 mph wind speeds

Foote Creek Rim I Layout

Southern Substation for Foote Creek Rim

Wind Speed and Turbine Output in Winter

Wind Speed and Turbine Output in Summer

Transmission Paths Impacting the Northwest

Wyoming TOT4 System Load Duration

Source: Calculated from PacifiCorp's End-of-Hour TOT 4A and 4B Load Data in Wyoming.

9,000

0

1.000

2,000

3,000

4,000

Annual Hours

5,000

6,000

7,000

8,000

Short-Term Transmission Products

- PacifiCorp is working with Bonneville Power Administration to develop a Conditional Firm product to be implemented by year-end 2008
- Many transmission paths are scheduled near capacity (75-90%) a high percentage of time
- Wind energy and other resources are curtailed because of transmission congestion
- PacifiCorp is holding public stakeholder meetings to review Conditional Firm products that can:
 - Optimize use of existing transmission system
 - Increase product flexibility for customers

Conceptual Plan for Multi-MWh VRB Plant

VRB Battery Cycling at a Large Windfarm in Japan

Daily Wind Output Smoothing at J-Power

- The VRB-ESS (blue line) runs continuously to smooth wind farm production (green line)
- At only 20% of the wind-farm's nameplate capacity, the VRB ESS has a significant smoothing effect to total wind-farm + battery output (red line)
- The VRB-ESS intelligently recharges throughout the day so that it maintains 50% SOC

Modeling Efforts

 Built and tested Excel model to calculate battery cycling based on actual transmission congestion, wind turbine output, tariff, and potential output without congestion

Battery Capacity	Battery Capital and O&M Costs
Charge Duration	Interest Rate
Discharge Duration	Battery Expected Life Span
Round-trip Efficiency Losses	Battery Salvage Value
Minimum Discharge Level	Conditional Firm Incentives
Tariff - Energy Charge	Charging/Discharging Schedule
Tariff - Capacity Charge	- Up to 2 seasons (Summer/Winter)
- Up to 5 different rate classes	- Weekday/Weekend
- Up to 2 seasons (Summer/Winter)	- Up to 2 cycles/day
Base Cost of Energy	- Start/Finish at end of hour

Aggressive Renewable Portfolio Standards

Source: Modified from Pew Center on Global Climate Change, www.pewclimate.org/what s being done/in the states/prs.cfm.

Model Sensitivity Runs – Time of Day Profiles

Aligning the battery charge/discharge profile with tariff time-of-use factors increased the MWh discharged and the revenue from capacity charges.

Restrictive tariff with low winter rates and efficiency losses worked against incremental revenue.

Variables	Once a Day	Twice a Day
Summer Charge	0:00 - 10:00	24:00 - 9:00; 19:00 – 21:00
Summer Discharge	12:00 - 20:00	11:00 – 19:00; 21:00 – 24:00
Winter Charge	0:00 - 10:00	0:00 - 10:00; 15:00 – 20:00
Winter Discharge	13:00 - 21:00	10:00 - 15:00; 20:00 – 24:00

Discharged MWh	4,020	6,083

Model Sensitivity Runs - Capacity

Altering battery capacity from 8 MWh to 48 MWh while holding a once a day 10-hour charge and 8-hour discharge.

24 MWh is the optimal size. Energy discharged and revenue per MWh discharged are optimized: 4,020 MWh at \$64/MWh.

Model Sensitivity Runs – Salvage Values

- VRB battery has two electrolyte storage tanks of active vanadium-sulfuric acid solutions
- Vanadium can be recovered from the electrolyte at the end of battery life
- VRB estimates this value at \$76/kWh of energy storage capacity
 - Compared a range of salvage values to examine the contribution to cost reduction

Salvage Value	Reduction
\$50/kWh	13%
\$76/kWh	19%
\$100/kWh	25%

Summary/Conclusions

- Energy storage can help windfarm operators cope with transmission congestion and forced curtailments
- Novel firm transmission products can improve project economics
- The model is robust; it can provide reliable analysis of wind speeds and turbine outputs in other transmissionconstrained markets.
- Less restrictive tariffs with capacity charges improve project economics
- Easier access to data can greatly improve analysis
- Thank you to DOE Energy Storage Program, Sandia National Laboratories, Wyoming Business Council, PacifiCorp, and VRB

Future Work

- No future work is anticipated through the grant with the State of Wyoming
- Approach PacifiCorp to consider integrating a flow battery with a windfarm in Wyoming and examine flow battery value under conditional firm transmission
- Track Conditional Firm and other novel transmission products
- Monitor future integrated wind-storage projects in the U.S. and abroad

